Negative Exponents

Image Credit: Pixabay.com
Thickness of a piece of paper is 0.00016 m
The size of a plant cell is 0.00001275 m.
Diameter of a wire on a computer chip is 0.000003 m.
The average diameter of a Red Blood Cell is 0.000007 m.

Arrange these in ascending order of size ?
We know how to write large numbers more conveniently using exponents. Can we write these very small numbers in exponential form?

Powers with Negative Exponent

↬102 = 10×10 =100
   101 = 10
   100 = 1
   10-1 = ?
As the exponent decreases by 1, the value becomes one-tenth of the previous value.
continuing the above pattern we get,
10−1 = 1/10
10−2 = 1/10 ÷ 10 = 1/100 1/102
10−3 = 1/100 ÷10 = 1/1000 =1/103
Let's change the base and observe the pattern,
32 = 3×3 =9
31 = 3
30 = 1
3−1 = ?
As the exponent decreases by 1, the value becomes one-third of the previous value.
continuing the above pattern we get,
3−1 = 1/3
3−2 = 1/3 ÷ 3 = 1/3×3 =1/32
3−3 = 1/3×3 ÷3 = 1/3×3×3 =1/33

↬ In general, we can say that, for any non-zero integer a and m, 
a−m =1/am ,            
We know that 1/am  is multiplicative inverse of am 
 a−m is the multiplicative inverse (reciprocal) of am.

↬ We can expand decimals using negative exponents as,
526.193 = 5 × 100 + 2 × 10 + 6 × 1 + 1/10  9/1003/1000
   = 5 × 102 + 2 × 10 + 6 × 1 + 1/10  9/101/103
   = 5 × 102 + 2 ×101 + 6 ×100 + 1× 10-1  + 9× 10⁻2 + 3× 10⁻3

Laws of Exponents

Laws of exponents which hold for positive exponents also hold for negative exponents.
For any non-zero integers a and b and any integers m and n .
→ a0 = 1exponent 0
→ a× an = a m+nsame base
→ am ÷ an = a m−nsame base
(am)n = a m×npower of power
→ a× bm = (a×b)msame exponent
→ am ÷ bm = (a/b)msame exponent
(a/b)−m  (b/a)mnegative exponent

Expressing very small number in Standard Index Form

→ Any number can be expressed as a decimal number between 1.0 and 10.0 including 1.0 multiplied by a power of 10 . Such a form of a number is called its standard form (or standard index form).
→ a × 10n  (where a is any real number such that 1≤|a|<10 and n is any integer. )
e.g., 799 = 7.99× 102
        79.9 = 7.9×10
        0.799 = 7.99× 10−2
        0.0799 =7.99×10−2
        0.00799 =7.99×10−3 & so on.

Very small numbers can be expressed in standard form using negative exponents.

→ Now we can express small number asked earlier in standard form
Thickness of a piece of paper is 0.000016 m = 1.6×10-5 m
The size of a plant cell is 0.00001275 m = 1.275×10-5 m
Diameter of a wire on a computer chip is 0.000003 m = 3×10-6 m .
The average diameter of a Red Blood Cell is 0.000000007 m = 1.6×10-9 m

Comparing numbers in Standard Index Form

To compare numbers in standard form, we convert them into numbers with the same exponents.
∎ Diameter of the Sun = 1.4 × 109 m
     Diameter of the earth = 1.2756 × 107 m
     Which is bigger and by how many times ?
↬ Diameter of the Sun = 1.4 × 109 m
     = 1.47× 102× 107 = 147× 107 m
     Diameter of the Earth = 1.2756 × 107 m
     Now, the exponents are equal, we can compare them, 147 > 1.2756
     So, Sun is bigger than Earth by = 147× 10/ 1.2756 × 107 ≅ 100 times.

Adding/Subtracting numbers in Standard Form

∎ To add or subtract numbers in standard form, we convert them into numbers with the same exponents.
e.g., 1.496 × 1011 – 3.84 × 108
= 1496 × 108 – 3.84 × 108
= (1496 – 3.84) × 108
= 1492.16 ×108

Exponents & Powers

Post a Comment

Previous Post Next Post